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A solution of the linear hydroelastic problem of the steady forced oscillations of a floating platform acted upon by a localized 
external load is given. The platform is assumed to be fairly thin and is modelled by an elastic plate with free edges. The method 
employed involves decomposing the region occupied by the liquid into subregions, bounded above either by a free surface or 
an elastic plate. A solution is obtained using an expansion of the required velocity potentials into eigenfunctions of the 
corresponding boundary-value problems. A beam plate of finite and semi-infinite length is considered in the plane case and a 
circular plate in the three-dimensional case. The solutions obtained for shallow water and for a liquid of finite depth are compared. 
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The action of dynamic loads on a thin elastic floating plate has been investigated in detail as it applies 
to an ice sheet (see, for example, [l-3]). It was assumed that the ice completely covers the free surface 
of the liquid. In connection with the construction of extremely large artificial floating structures, such 
as floating islands, the need arises to investigate the influence of unsteady dynamic loads on an elastic 
plate of finite dimensions. Despite the fairly complete solution in the linear formulation of the 
hydroelastic problem of the action of unsteady loads on an unbounded plate, there are no solutions 
for finite regions. 

In this paper we obtain a solution of the linear hydroelastic problem of the steady oscillations of a 
bounded floating plate acted upon by a periodic external load. 

1. FORMULATION OF THE PROBLEM 

Suppose a thin elastic plate, occupying a region Q1 and bounded by a contour r floats on the surface 
of a layer of an ideal incompressible liquid of depth h. The region s22 outside the plate is the free surface 
of the liquid. We will assume that periodic normal strksses, with frequency o, having the form 

pC.6 y, f ) = Pk y) exp(W (1.1) 

act on the plate, where x and y are horizontal coordinates and t is the time. We will investigate the 
oscillations of the liquid and the plate, due to these stresses, assuming that the motion that occurs is 
steady. The motion of the liquid is assumed to be potential, while the velocity of the liquid particles 
and the bending of the plate are assumed to be small. 

The velocity potentials @(x, t), which describe the motion of the liquid under the plate (j = 1) and 
in the region bounded by the free surface (j = 2), will be sought in the form $j(X, t) = @j(x) exp(iot), 
where x = (x,y, z), the z axis is directed vertically upwards and the origin of coordinates is at the bottom 
of the basin. The normal bending of the plate W(X, y, t) = W(x, y) exp(iot) and the elevation of the free 
surface TJ(X, y, t) = <(x, y) exp(iot) are found from the relations 

By linear wave theory, to determine @j(X) (j = 1,2) we need to solve the system of equations 

Q-2) 

(1.3) 
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with boundary conditions 

DA’W-p,h,o*W+pgW+ip~, =-f’(x,y) (x,yEi&, z=h) (1.4) 

a@, CO* 
--y(P* =o (x,yER*, z=h) aZ 

aa. 
‘=o (z=O) az 

(1.5) 

(1.6) 

where D = E h$[12(1 - v’)], E, pl, hl, v is the modulus of normal elasticity, the density, the thickness 
and Poisson’s ratio of the plate, p is the density of the liquid and g is the acceleration due to gravity. 
The following matching conditions, which denote the continuity of the pressure and the horizontal 
velocity along the normal 12 in the contour r, must be satisfied on the side surface of the vertical column 
of liquid with section Szi 

a, = a,, aa, _ aa2 ---gg (x,yel-, Oczch) an (1.7) 

On the edges of the plate we have the free-edge conditions, i.e. the bending moment and the shearing 
force vanish (see, for example, [4]) 

(-LYEU w9 

where a(s) is the angle of inclination of the outward normal to the x axis, s is the arc coordinate of the 
contour r, v1 = 1 - v, and the prime denotes differentiation with respect to s. The following radiation 
condition must be satisfied far from the plate 

lim J; 
a 

( 1 
z-i&, Q,=O, r= x +y F r-i- 

(1.9) 

where k0 is the wave number of the gravitational surface wave, defined as the positive real root of the 
equation 

cc* = gk th(kh) (1.10) 

The radiation condition means that, as r + 00, the waves are diverging. The power expended in 
generating these waves is [5] 

(1.11) 

where the asterisk denotes complex conjugation. An alternative method of determining the power in 
terms of the energy of plane progressive waves is described in [6]. It is well known that the mean energy 
flux F per oscillation period for a plane wave with amplitude to is 

and the power consumed is given by the expression 

T = r?FdO 
0 

(1.12) 
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2. THE SHALLOW-WATER APPROXIMATION 

If the depth of the liquid is sufficiently small, we can use shallow-water theory, according to which the 
required velocity potentials are independent of the vertical coordinate z. In this approximation, we can 
easily take into account the settling of the plate d. To determine Oj(X,y) (j = 1,2) we obtain the following 
problem (for more detail see, for example, [4]) 

DA3@, + (pg - p,h,w*)A@, + 5 q =~P(x.y) (X.Ya2,) 

A@,+$ =o (x,yd2), h, =/x-d 

Matching conditions (1.7) take the form 

@‘I = 02, 
aq _ h aa, 
--ran (-GYEl-) 
afl 2 

The free-edge conditions (1.8) do not change, but in the radiation condition (1.9) we must put 

k,, =wlJgh 

(2.1) 

(2.2) 

The normal sag of the plate is equal to 

3. A BEAM PLATE 

We will consider the plane problem in which there is no dependence on the y coordinate. We will assume 
that the function P(x) is even and non-zero only when 1x1 c 1. The length of the plate is L and its 
left end has the horizontal coordinate x = -L1, while the right coordinate is x = L2 = L - L1 (Ll, 
L2 > 1). To solve the plane problem it is convenient to divide the region occupied by the liquid into 
three parts: S1 (-L1 -c x < L2), S2 (x < -L,), S3 (x > L2); in each of these the velocity potential will be 
denoted by @j(X, z) (j = 1,2, 3). Inside the liquid these functions satisfy the two-dimensional Laplace 
equation 

3 a*@. 
ax2 

+I=0 (X,YESj) 
a2 

Using relations (1.2) we will write boundary condition (1.4) in the form 

[ 
Dg-p,h,o’ +pg 

1 
2% 

az PO’@, =-iwP(x) (-L., <XC 4, z=h) 

In regions S2 and S3, bounded by the free surface, when z = h condition (1.5) is satisfied for a’2 and 
@, and on the bottom condition (1.6) is satisfied for all functions Oj. The matching conditions (1.7) 
now have the form 

q = Q,, a@, _ aa2 
-.--ax (x=-L,,O~zzs) 

ax 

Q, = Q3, aa,, _ aa3 
--ax (x=L,,Oszsh) 

ax 

(3.1) 

(3.2) 

The free-edge conditions (1.8) are considerably simplified and take the form 



74 I. V Sturova 

a3a+ _ a% --‘=o (x=-L,,x=L.2, z=h) ax2az ax3az 

The functions CP (j = 1, 2, 3), as previously [7, 81, 
h 

will be sought in the form of an expansion in 
eigenfunctions oft e corresponding boundary-value problems. In the region of the liquid Si, bounded 
by the elastic plate, the normalized natural vertical modes have the form 

~,,,(z)=ch(u,&/-m, A(cl)=h/2+sh(2Cth)/(4~) 

where the eigenvalues um are the roots of the equation 

u2 = S(P); S(P) = (@t4 + ps)uth(MV Q&h Q(P) = p +p,@ tMl.lh) 

The quantities l.~_~ and u-2 = -ufi are complex and belong to the first and second quadrant, respectively, 
of the complex plane u, the real positive root u. is the wave number of the flexural-gravitational wave, 
while the quantities ul, uz, . . . are pure imaginary roots. 

We will write the,general solution for ai in the form 

@,(~.z)=~$L exp(-d-w)+ B, ev(k,,x)]q,,,W+ @o(.Gz) (3.3) 

where @,(x, z) is the solution of the problem of the action of periodic pressures on an unbounded beam 
plate. The solution of this problem is well known [l, 2,9] and has the form 

a+) =w 

[. 
- &~)ch(5z)cos(bMk -+.J _ ~(Po)ch(Poz)cos(Po~) 
o ch(&)Q(+* - S(5)] c'+o~)Q(~o)~'bo) 1 (3.4) 

(&{) is the Fourier transform of the function P(X), and p.v. denotes the integral in the sense of the 
principal value). The second term in the square brackets in (3.4) is necessary in order to satisfy the 
radiation condition, since the integrand always has a simple pole at the point 5 = p+ In the far field of 
an infinite plate a single system of flexural-gravitational waves with wavelength 27r/h is generated, and 
the normal sag of the plate is described by the expression 

w(x) = iPo+o) thboh) 
Q(Po)@o) 

exp(T &lox) (x + *) 

Examples of the calculations of the amplitudes of these waves were given previously in [9]. 
The general solutions for m2 and o3 in regions bounded by the free surface of the liquid can be 

represented in the form 

@z(.cz) = CO exp(ikox)fo(z)+ jIt,Cm exp(--iQ)f,(z) 

a3(x,z) = F, exp(-ikox)fo(z)+ 5 F, exp(&,,x)f,(z) 
111 = I 

(3.5) 

(3.6) 

-- 
where& = ch(k,z)l L A(&) ; k,, k2, . . . are pure imaginary roots of Eq. (1.10). The wave mades related 
to k, and pm (m 2 1) are called edge waves. 

For a numerical solution we used the reduction method and the infinite series in (3.3), (3.5) and (3.6) 
are replaced by finite sums with a number of terms M. The matching conditions (3.1) and (3.2) are 
satisfied in the integral sense, i.e. they are multiplied successively by the functions fm(z), q,&) 
(0 G m 6 it4) and integrated in the interval 0 < z c h. Finally, the problem is reduced to solving a 
system of 4(M + 2) linear equations. 
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After calculating all the unknown constants in (3.3) (3.5) and (3.6) we can determine the 
normal sag of the plate and the vertical displacements of the free surface of the liquid, taking (1.2) into 
account. The amplitudes of the surface waves 5; far from the plate as x + + 00 are given by the 
expressions 

60’ = k0 sh(k,h)~C,]lw, 6; = k,, sh(k,h)lF,]lo 

A special case of this problem when Li + -00 is the problem of the action of surface pressures on a 
semi-infinite beam plate. In this case the region occupied by the liquid is divided into two parts: 
Si (x < L2) and S3 (x > Lz). The representation for Cp,, as previously, has the form (3.6), while for 
@i in (3.3) we must omit terms with coefficients B_2, B_I, A0 and B, (m 3 1). The matching conditions 
(3.2) must be satisfied at the boundary of the regions Si and S3. To solve this problem we also used the 
method of integral splicing, and the problem was reduced to a system of 2(M + 2) linear equations. 

In the shallow-water approximation there are no edge waves, and for a plate of finite length 
representations (3.3), (3.5) and (3.6) have the simpler form 

a, (x. z) = g [A,,, exp(-+,x) + B,,, expW,,~)l+ %,(x7 z) (3.7) 
m=-2 

<p, = Co exp(ikax), Q3 = Fe exp(-ikex) (3.8) 

The quantity k0 is given by expression (2.2) while pm (m = -2, -1, 0) are the solutions of the cubic 
equation 

0~' +(pg-02plh,)~-w*p/h, =0 

It was well known [l], that this equation has one positive root xl and two complex-conjugate roots 
x2 and x3, in which case p. = \:Ki, u_i = ,.X2, u_2 = -,x3. The solution Q&r) for an infinite plate has 
the form [l] 

a0 =f 
[ 

- i?~,cos(~)~5 
i p.v.] &CL0 1 C~~(Po-4 

2 0 Z(5W2 - w,1- zwo )mo) I 

where 

Z(S) =pM2 +plh,, W%=52(D54 +pg)/Z(& ~‘(1.&_,)=~/41~=~,, 

The unknown coefficients in (3.7) and (3.8) are found from the matching conditions (2.1), which, in 
the plane case, have the form 

and the free-edge conditions 

In the shallow-water approximation the problem reduces to solving a system of eight linear equations 
for a finite plate and four equations for a semi-infinite plate. 

4. A CIRCULAR PLATE 

For the three-dimensional problem we will consider the simplest shape, namely, a circular plate. 
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In addition to a Cartesian system of coordinates x, y, z it is convenient to introduce a cylindrical 
system r, 8, z. The common vertical axis z passes through the centre of the plate of radius ro. We 
will assume that normal stresses are applied to the plate only in a circle of radius 1, the centre of 
which is at the point x = 
R = \i(x -L,)’ + y*. 

Li, y = 0 (1 + L1 < t-o), while the function P(x, y) in (1.1) depends only on 

The matching conditions (1.7) for a circular plate take the form 

a@, _ 2% a+=@*, --- ar ar (r=ro, Oszah) 

while the free-edge conditions (1.8) take the form 

aw_3a2W VI dw _dAW VI a2w VI a’w 
----+--~0 (r=ro) 

ri &3* -IT- & ri ae* ri &*ar 

Using the approach proposed in [7], the solution of Eqs (1.3) will be sought in the form 

@, = $ X,(r,e)q,(z)+~o(R,z), @2 = 5 Z,(r,Wf,(z) 
m=-2 m=O 

where the functions X,,, and Y, satisfy Helmholtz’ equations 

(4.1) 

(4.2) 

AX,+j.t;X,,,=O(mk-2), AZ,,,+k;Z,,,=O (ma0) (4.3) 

The function @o is the solution of the axisymmetric problem of periodic pressures, acting on an infinite 
plate. It is well known that [l, 21 - ~i;(~)Jo(~R,ch(E,z)d&, _ clo~(clo)Jo(clo~)Ch(cloZ) 

o ch(SMQ(~)[~2 - %)I chw-,h)Q(PoP’(Po) 1 (4.4) 

i;(c) = 27tfi RP(R)J,(cR)dR 
0 

where Jo is the Bassel function of the first kind of zero order. 
We will seek a solution of Eqs (4.3) in the form 

X, = g A~‘“‘J,(p,r)cos(ne) (m 2 -2) 
n=O 

Z, = C B,I”‘H,12’(kor)cos(ne), Z,, = i BAm)Kn(I k, 1 r)cos(d) (ma I) 
,I=0 n=O 

where Hi*’ is the Hankel function of the second kind and K, is the modified Bessel function of the second 
kind. ‘. 

We will expand the expression for Do and (4.4) in a Fourier series 

@,(R,z)= 5 D,(r,z)cos(ne) 
n=O 

5&5,ch<Sz> 

ch(5WQ(5)W2 - S(t)] 
J, (54 J, (64 k% - 

- ~oP(po)ch(poz) J,(por)J,(pof,,) 
ch(l.loh)QW’o @‘(PO) 1 

Eo =K, &,=I (n3I) 

To determine the unknown coefficients A(m) and B(,“) w e use the matching conditions (4.1), which 
are satisfied in the same way as described in Section 3 in the integral sense, and the free-edge conditions 
(4.2). In the systems of equations obtained we must collect the coefficients of like values of cos(&), 
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and for each angular harmonic, using the reduction method, the problem is reduced to solving a system 
of 2(M + 2) linear equations. 

When the pressure spot is situated at the centre of the plate (L, = 0), the problem becomes 
axisymmetrical and only the coefficients with n = 0 will be non-zero. When Li # 0, N angular harmonics 
were taken into account in the numerical solution. 

Far from the plate, when r + m, the vertical displacements of the free surface have the form 

Taking into account the asymptotic representation of the Hankel function for large values of the 
argument, we obtain 

The amplitude of the surface wave in the far field has the form 

The power consumed in generating the waves, according to expression (1.12), is equal to 

The result is also obtained when using expression (1.11). 
In the shallow-water approximation, we must introduce changes similar to those in Section 3, and, 

as a result, it is necessary to solve a system of four linear equation for each angular harmonic. 

5. NUMERICAL RESULTS 

We used the following pressure distributions when making the numerical calculations: 
in the plane case 

2 

P(x)=a I- f 

[ ()I (Ix I< 09 
4a sin(&) 

P(r;,=p 
i 

gr -cos(&) 1 
in the three-dimensional case 

P(R)=0 I- ; 

2 

[ ()I J, (50 
(RCI), i;(~)=47w-- 

5* 

where a is a dimensionless factor. 
The values of the initial parameters were taken to be the same as in [4], namely, 

D = 1.093 x 103 kg m2/s2, h = 0.25 m, p = 103 kg/m3, prhi = 12.5 kg/m*, v = 0.3 

The half-width of the pressure region in all the calculations is equal to 1 = 2h. The settling of the plate 
was ignored in the shallow-water solution. 

Figure 1 shows the amplitudes of the surface waves in the far field c = pg@u as a function 
of the dimensionless frequency 0 = \ h/g for a beam plate with L, = 15h, L2 = 5h (a, b) and 
L, + L2 = 1Oh (c). Curves 1 and 2 represent the solutions for a finite plate, while curves 3 and 4 in 
Fig. l(a, c) represent the solutions for a semi-infinite plate. In Figs 1 and 2 the odd numbers on the 
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Fig. 1 

curves correspond to solutions for a liquid of finite depth taken M = 20 edge modes into account, while 
the even numbers correspond to shallow water. 

It wan be seen that in the case of a finite plate the dependence of the amplitudes of the surface waves 
on the frequency is extremely non-monotonic. ThiEis not observed for a semi-infinite plate. 

The amplitudes of the normal sags of the plate W = pgW/u are represented in Fig. 2(a-c) for three 
values of the dimensionless frequency w = Ll.3, and 1.6 respectively, in the case of a finite plate with 
Li = 15h and L2 = 5h (curves 1 and 2), for a semi-infinite plate with L2 = 5h (curves 3 and 4) and for 
an unbounded plate (curves 5 and 6). The hatched strip in Figs 2 and 4 shows the region in which the 

0 x/h 

Fig. 2 
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pressure is applied. It can be seen that the maximum sags occur at the edges of a finite plate and of 
the three cases shown the greatest sags occur when 6I = 1.3. This frequency corresponds approximately 
to the local maximum of the amplitude of the vertical displacements in the far field (Fig. la, b). The 
action of a periodic load leads to much greater sags of the plate when it is of limited dimensions compared 
with the case of an infinite plate. In the case of a semi-infinite plate the parameters of the oscillations 
of the free edge almost repeat the values for a finite plate, but the normal sags decrease considerably 
as one moves to the left from the pressure region and become close to the values in the case of an infinite 
plate. A similar situation occurs in the diffraction problem when investigating the scattering of surface 
waves on a floating elastic strip (see, for example, [S]). 

It is interesting to note that the solutions for a liquid of finite depth and shallow water differ much 
less in the behaviour of the plate than of the free surface. This can be explained by the fact that, for 
gravitational waves, the relative disagreement between the wave numbers of these two solutions reaches 
10% when 6i = 0.8, whereas for flexural-gravitational waves, with the parameters used, the same 
disagreement only occurs when B = 3.8. 

In Fig. 3(a-d) we show the power T = Tp\m/ a2 as a function of frequency for a circular plate 
with r. = 1Oh for Lt/h = 0, 3, 5 and 7, respectively. Curves 1 and 2 represent the case of a liquid of 
finite depth with M = 10 and 20, while curves 3 represent the shallow-water approximation. In all the 
calculations N = 15 when L1 f 0. Any further increase in N does not change the result. As in the plane 
problem (compare with Fig. 1), at certain frequencies there is a sharp increase in the wave motions. A 
change in the number of edge modes has only a small effect in the region of the power peaks. 

It is well known [lo] that for a circular elastic plate, oscillating in a vacuum, there is a discrete set of 
real natural frequencies for each angular harmonic. The least natural frequency when n = 0 for a plate 
with free edges with the chosen parameters corresponds to 6j = 2.17. For an elastic plate, floating on 
the surface of a heavy liquid, only complex natural frequencies with a positive imaginary part due to 

0.6 

T 

0.4 

0.6 

T 

0.4 

0.2 n - A -c' 7 d ---- 

Cd) 

0 1 2 6 

Fig. 3 
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scattering of the energy by surface waves can exist. Local maxima in the frequency-dependence of the 
power T may be a reference point in searches for the eigenvalues with minimum imaginary party. Note 
that the values of the local power maxima decrease the further the pressure spot is from the centre of 
the plate. 

In Fig. 4(a-c) we show the amplitudes of the normal sags of a circular plate along the diameter line 
y=Owithra=lOhandLi = 5h for D = 1,1.6 and 2.2 respectively. Curves 1 and 2 represent the solutions 
for a circular plate, and curves 3 and 4 are for an unbounded plate. The odd numbers on the curves 
correspond to the solutions for a liquid of finite depth, taking into account M = 20 edge modes, while 
the odd numbers correspond to shallow water; in both cases N = 15. Like the plane case (compare 
with Fig. 2) the greatest sags of the plate are observed at its edges. At a frequency D = 1.6, which 
corresponds approximately to the local power maximum (see Fig. 3c), the sags of the plate are greater 
than for the other frequencies considered. 

In Fig. 5(a-c) we show isolines of the amplitudes of the normal sags of the plate @(r < ra) and the 
vertical displacements of the free surface < (r > ra) for 8 = 0.5 and r. - Li = 5h for three values of the 
plate radii r& = lo,20 and 30, respectively. The upper halves of each of the figure show the solution 
for a liquid of finite depth (M = lo), while the lower half shows the solution for shallow water; in both 
solutions N = 20. The isolines are drawn in steps of 0.02. The dashed circle corresponds to the region 
where the pressure is applied. The boundary of the plate is shown by the thicker line. The behaviour 

-10 -5 0 5 xlh 

Fig. 4 

-10 0 10 x/h 10 20 xth 20 30 xJh 

Fig. 5 
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of the plate is practically same for the two solutions, but small disagreements are observed in the 
behaviour of the free surface. 

For a fixed distance of the pressure spot from the right edge of the plate, the solution of the problem, 
as the radius of the plate increases, approaches the solution of the problem of the action of pressure 
on a semi-infinite plate in the region of its straight edge. 

6. CONCLUSION 

The results obtained show that the limited dimensions of an elastic plate considerably influence the 
characteristics of its oscillation when acted upon by an external periodic load. The qualitative behaviour 
of the sags of the plate in the plane and the three-dimensional cases is the same. The finite dimensions 
of the plate in both cases lead to considerably greater oscillations of the plate (particularly at the edges) 
compared with an unbounded plate. In some cases the amplitudes of the normal sags of the plate at 
its edges considerably exceed the corresponding values in the inner part, which indicates possible 
localization of the oscillations of the plate in the neighbourhood of the edges. For a finite plate there 
are resonance frequencies of the external load for which the amplitudes of both the normal sags of the 
plate and the vertical displacements of the free surface of the liquid increase sharply. This phenomenon 
is more pronounced for a liquid of finite depth than for shallow water. 

The proposed approach can be extended to investigate the hydroelastic behaviour of plates of different 
shape when acted upon by periodic pressures. The oscillations of a rectangular plate, floating on the 
surface of a liquid of finite depth, can be determined by using the results obtained previously [7]. In 
the shallow-water approximation, one can consider a plate of arbitrary shape using an approach similar 
to that described earlier in [4]. 
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